Soft Matter exercise, Chapter 6: Phase transition

1. Spinodal decomposition

- a. Draw the Gibbs free energy as a function of the composition of a binary mixture that phase separates if cooled below the critical temperature for $T_1 < T_c$.
- b. Draw a phase diagram that contains the data points that can be extracted from the Gibbs free energy graph you plotted in (a).
- c. Indicate the compositions of the two phases formed at T_1 in the Gibbs free energy diagram you made in (a) and in the phase diagram you made in (b).
- d. What is spinodal decomposition and when does it occur?
- e. If spinodal decomposition occurs, why can e.g. atoms, molecules, or ions diffuse in the opposite direction to their concentration gradient?
- f. Sketch the microstructure of a polymer mixture that underwent spinodal and binodal decomposition respectively. What is different?

2. Solubility

The value of χ between water and linear hydrocarbons may be approximated as $\chi = 3.04 + 1.37 n_C$ where n_c is the number of carbons contained in the hydrocarbon chain.

- a. Calculate the solubility of hexane in water at 25°C
- b. Calculate the solubility of octane in water at 25°C
- c. Calculate the solubility of dodecane in water at 25°C.

3. Phase diagram of a liquid mixture

The phase behavior of a polymer solution can be described by the regular solution model, with the interaction parameter being χ = 600 K/T, where T is the temperature.

- a. Calculate the temperature at the critical point.
- b. Does the system phase separate at 273 K?
- c. Calculate the volume fractions of the two co-existing phases at 5°C.
- d. What would change if you have a polymer that is dissolved in a solvent if the polymer has 1000 repeat units? Would the interaction parameter change? If yes, why? If no, why not?

4. Phase diagram of a polymer mixture

You prepare a mixture of two polymers whose critical composition is $\Phi_{c,1}$ = 0.4. You prepare the mixture above the critical temperature, where the two phases are soluble and subsequently cool the mixture below the temperature of the critical point. Describe the microstructure of a mixture composed of

- a. $\Phi_1 = 0.3$ and $\Phi_2 = 0.7$.
- b. $\Phi_1 = 0.4$ and $\Phi_2 = 0.6$.
- c. What is $\Phi_{c,1}$ of an ideal solution? Why can it be different for polymer solutions?